

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

servizio prove accreditato compatibilità elettromagnetica

TEST REPORT

Doc. n.: 16146 Rev.: 1

issued on: November 29th, 2016

EMC TEST

According to:

EN 61000-6-2:2005; EN 61000-6-3:2007 /A1:2011.

Performed for:

E.U.T.:

Test laboratory manager:

Signature:

Operator:

Signature:

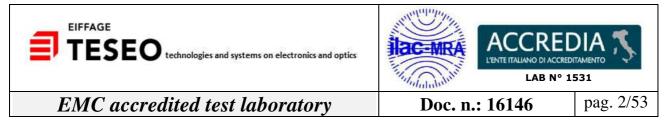
Druento:

MTM S.r.l.

Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Andrea Buczkowsky

×Ilario Molon TA


Simone Papi

November 29th, 2016

Simons &

This report shall not be reproduced except in full without the written permission of the EMC Testing accredited Laboratory TESEO LALL and shall not be quoted out of contest.

This document has been printed in original on paper reporting the TESEO LAGE logo in colour	
Date: November 29 th , 2016	Revision: 1
MOD 0.104 B rev.4	

INDEX

1. IDENTIFICATION	5
1.1Test report1.1.1Revision matrix	5 5
1.2 Laboratory	6
1.3 Customer	6
1.4Equipment Under Test (EUT)1.4.1EUT modifications1.4.2Support equipment	6 7 8
1.5 EUT Sampling	8
1.6 Test scope	8
1.7 Limits	8
1.8Operation of EUT during testing 1.8.1Operating environment:1.8.2Operating mode1.8.3Configurations and peripherals1.8.4Performance criteria	8 8 8 8 9
2. TEST SUMMARY	10
2.1 EMISSION TESTS	10
2.2 IMMUNITY TESTS	11
3. DETAILS OF THE EXECUTED TESTS	12
 3.1 Test N° E.1: Conducted emissions Test facilities EUT Configuration during the test EUT exercise software EUT exercise software Special accessories Measurement uncertainty Test equipment used Results Comments 3.2 Test N° E.2: Radiated emissions 	12 12 13 13 13 13 13 14 19 20
3.2.1 Test facilities 3.2.2 EUT Configuration during the test	20 20 20
This document has been printed in original on paper reporting the east logo in Date: November 29 th , 2016	

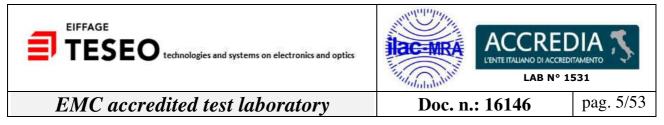
Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Doc. n.: 16146

pag. 3/53

3.2.3	EUT exercise software	20
3.2.4	Special accessories	21
3.2.5	Measurement uncertainty	21
<mark>3.2.6</mark>	Test equipment used	21
<mark>3.2.7</mark>	Results	22
<mark>3.2.8</mark>	Comments	27
3.3 T	est N° E.3: Harmonic current emissions	28
3.3.1	Test facilities	28
3.3.2	EUT Configuration during the test	28
3.3.3	EUT exercise software	28
3.3.4	Special accessories	28
<mark>3.3.5</mark>	Test equipment used	28
<mark>3.3.6</mark>	Results Comments	28
<mark>3.3.7</mark>	Comments	33
3.4 T	est N°E.4: Voltage fluctuations and flicker	34
3.4.1	Test facilities	34
3.4.2	EUT Configuration during the test	34
3.4.3	EUT exercise software	34
3.4.4	Special accessories	34
3.4.5	Equipment used	34
<mark>3.4.6</mark> <mark>3.4.7</mark>	Results Comments	34 37
<mark>3.4.7</mark>	Comments	57
3.5 T	est N° I.1: Conducted Immunity	38
3.5.1	Test facilities	38
3.5.2	EUT Configuration during the test	38
3.5.3	EUT exercise software	39
3.5.4	Special accessories	39
3.5.5 <mark>3.5.6</mark>	Measurement uncertainty	39
3.5.0 3.5.7	Test equipment used Execution of the test	39 39
3.5.8	Results	39
3.5.9	Comments	39
	est N° I.2: Irradiated Immunity	40
3.6.1	Test facilities	40
3.6.2	EUT Configuration during the test	40
3.6.3 3.6.4	EUT exercise software Special accessories	41 41
3.6.5	Measurement uncertainty	41 41
3.6.6	Equipment used	42
3.6.7	Execution of the test	42
3.6.8	Results	42
<mark>3.6.9</mark>	Comments	42
27 T		12
3.7 T 3.7.1	est N° I.3: Electrical Fast Transients / Burst (EFT/B) Test facilities	43 43
3.7.1	EUT Configuration during the test	43 43
3.7.2	EUT exercise software	43
3.7.4	Special accessories	44
	as been printed in original on paper reporting the	
Date: Nove	2016 mber 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104_B	rev.4	

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002


Doc. n.: 16146

pag. 4/53

3.7.5	Equipment used	44
3.7.6	Results	44
3.7.7	Comments	44
3.8 Tes	st N° I.4: Immunity to voltage dips and interruptions	45
3.8.1	Test facilities	45
3.8.2	Configuration of the EUT during the test	45
3.8.3	EUT exercise software	45
3.8.4	Special accessories	45
<mark>3.8.5</mark>	Test equipment used	45
<mark>3.8.6</mark>	Results	45
<mark>3.8.7</mark>	Comments	46
20 T.	а вто т <i>п</i> в в стал с с с с с с с с с с с с с с с с с с с	47
3.9 Te 3.9.1	st N° 1.5: Magnetic field immunity	47
3.9.1	Test facilities	47 47
3.9.2 3.9.3	Configuration of the EUT during the test EUT exercise software	47 47
3.9.3	Special accessories	47
3.9.4 3.9.5	Test equipment used	48
3.9.5 3.9.6	Execution of the test	48
3.9.7	Results	48
3.9.8	Comments	48
0.7.0	Comments	
3.10 Tes	st N°I.6: Immunity to electrostatic discharges	49
3.10.1	Test facilities	49
3.10.2	Climatic conditions at the time of testing	49
3.10.3	Configuration of the EUT during the test	49
3.10.4	EUT exercise software	49
3.10.5	Special accessories	49
<mark>3.10.6</mark>	Test equipment used	49
3.10.7	Measured uncertainty:	50
3.10.8	Execution of the test.	50
3.10.9	Results	51
<mark>3.10.10</mark>	Comments	51
3.11 Tes	st N° I.7: Surges immunity	52
3.11.1	Test facilities	52 52
3.11.1	Configuration of the EUT during the test	52
3.11.2	EUT exercise software	53
3.11.5	Special accessories	53
3.11.4 3.11.5	Test equipment used	53
3.11.5 3.11.6	Result	53
3.11.0 3.11.7	Comments	53
<mark></mark>		55

This document has been printed in original on paper reporting the

Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104_B rev. <mark>4</mark>	

1. IDENTIFICATION

1.1 Test report

Number:	16146
Data:	November 29 th , 2016
Text pages:	<mark>53</mark>
Revision:	1

1.1.1 Revision matrix

This document is the revision number 1 of the document n. 16146 issued on November 29th, 2016. The document n. 16146 revision number 0 has to be replaced by this document. The document n. 16146 revision number 0 has been modified in following parts for following reasons:

Paragraph	Revision	Description	Date
1.1	1	Eliminated "N. attached pages", edited N. text pages 32 to 53	November 29 th , 2016
<mark>1.1.1</mark>	1	Table revision matrix	November 29 th , 2016
1.2	1	Replaced 15131 whit 1531	November 29 th , 2016
2.1 e 2.2	1	Replaced the sentence "This test wasn't executed under the credit controll Accredia" whit "Test not accredited from Accredia".	November 29 th , 2016
2.2	1	Deleted the sentence "Only the first test I.6 has been performed under the credit controll Accredia."	November 29 th , 2016
3.1.6 / 3.2.6 / 3.3.5 / 3.4.5 / 3.5.6 / 3.6.6 / 3.7.5 / 3.8.5 / 3.9.5 / 3.10.6 / 3.11.5	1	Deleted the sentence "Calibration of these instruments is performed periodically (complying with UNI ISO 17025 calibration procedures)."	November 29 th , 2016
-	1	Eliminated the attachments A,B,C,D,E,F,G from report	November 29 th , 2016
3.1.7	1	Added content the attachment A	November 29 th , 2016
3.2.7	<mark>1</mark>	Added content the attachment B	November 29 th , 2016
<mark>3.3.6</mark>	1	Added content the attachment C	November 29 th , 2016
<mark>3.4.6</mark>	1	Added content the attachment D	November 29 th , 2016
3.1.8 / 3.2.8 / 3.3.7 / 3.4.7 / 3.5.9 / 3.6.9 / 3.7.7 / 3.8.7 /	1	Replaced the sentence "This test has been performed according to the standard of laboratory quality" with "Test not accredited by Accredia".	November 29 th , 2016

This document has been printed in original on paper reporting the

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev.4	

Doc. n.: 16146

pag. 6/53

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.9.8 / 3.11.7			
<mark>3.7.6</mark>	1	Deleted the sentence "For more information refer to annex E"	November 29 th , 2016
<mark>3.8.6</mark>	1	Deleted the sentence "For more information refer to annex F"	November 29 th , 2016
<mark>3.11.6</mark>	1	Deleted the sentence "For more information refer to annex G"	November 29 th , 2016
<mark>3.10.10</mark>	1	Deleted the sentence "This test has been performed under Accredia accreditation".	November 29 th , 2016

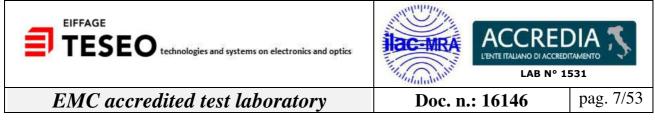
1.2 Laboratory

Name:	Laboratorio accreditato prove EMC - TESEO S.P.A.C.E.
Street:	Corso Alexander Fleming, 25/27/29
City:	10040 Druento (TO) – Italy
Telephone:	+39 011 994 19 11
Fax:	+39 011 994 19 00
e-mail:	a.buczkowsky@teseo.clemessy.com
internet site:	http://en.teseo.clemessy.com

Accreditation Certificate n. 1531, issued on September 16th, 2015, by ACCREDIA l'ente italiano di accreditamento, referring to EN 61000-4-2:2009 and EN 55014-1:2006 /A1:2009 /A2:2011 limited to paragraph 5. Visit: http://pa.sinal.it/175695.pdf and http://pa.sinal.it/PA1890AR0.PDF

Accreditation Certificate n. 114, issued on January 29th, 2014, by *Ministero dello Sviluppo Economico* - Direzione Generale per la pianificazione e la gestione dello spettro radioelettrico, valid for three years.

1.3 Customer


Company:	MTM S.r.l.
Street:	Corso Dante, 90
City:	10126 Torino (TO)
Telephone :	393-9275193
Fax :	-
Client manager:	Mr. Mustica Umberto
email:	umbertomustica@libero.it

1.4 Equipment Under Test (EUT)

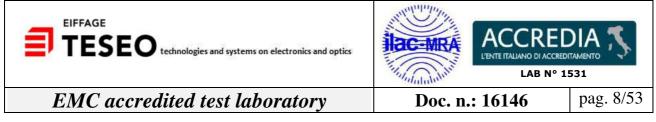
Name:	Eolic powered aspirator mod. 300/BQ/INOX s/n 0002
Manufacturer:	MTM S.r.l.
Supplier:	MTM S.r.l.
Test period:	November 28-29 th , 2016
EUT received on:	November 28 th , 2016

This document has been printed in original on paper reporting the STESEO MARKE logo in colour


Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104_B rev.4	

EUT Block diagram:

EUT Picture:


Observations: None

1.4.1 EUT modifications

None.

This document has been printed in original on paper reporting the

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev. <mark>4</mark>	

1.4.2 Support equipment

None.

1.5 EUT Sampling

The tests were performed on the Eolic powered aspirator mod.300/BQ/INOX s/n 0002 selected by the Customer from its manufacturing.

1.6 Test scope

The scope of the tests is to verify the general status of the EUT with respect to electromagnetic compatibility using standard methods, in accordance with EMC directive 2014/30/UE.

1.7 Limits

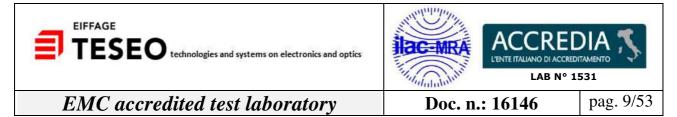
The test results presented in this report apply only to the particular EUT, components, cables and modifications declared in the referred section 1.4.

1.8 Operation of EUT during testing

1.8.1 Operating environment:

Environment limitations:

Temperature:	$25^{\circ}C \pm 10^{\circ}C$
Humidity:	45% RH ± 15 RH
Pressure:	960 mbar ± 100 mbar (720mm Hg ± 75mm Hg)

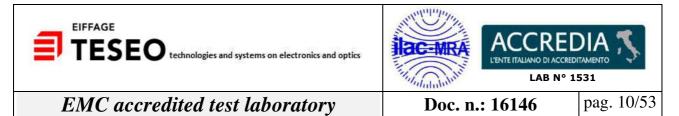

1.8.2 Operating mode

Normal running.

1.8.3 Configurations and peripherals

Device configurations and peripherals during the test are in accordance with the standard requirements for installation.

This document has been printed in original on paper reporting the	in colour
Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104_B rev.4	


1.8.4 Performance criteria

Performance criteria A: No degradation of performance or loss of function is allowed during the test.

Performance criteria B: The apparatus shall continue to operate as intended after the test. Degradation of performance or loss of function is allowed during the test.

Performance criteria C: Temporary loss of function or degradation of performance, the correction of which requires operator intervention.

This document has been printed in original on paper reporting the **TESEO** APACE logo in colour

2. **TEST SUMMARY**

2.1 **EMISSION TESTS**

N°	Test	Port	Frequency	Class	Result
E.1	Conducted Emissions (*)	Power supply 230Vac	0.150-30MHz	В	Passed
E.2	Radiated Emissions (*)	Enclosure	30 – 1000MHz	В	Passed
E.3	Harmonics (*)	Power supply 230Vac	50Hz	Α	Passed
E.4	Voltage fluctuations (*)	Power supply 230Vac	50Hz	Α	Passed

Observations: (*) This test is not accredited by ACCREDIA.

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

2.2 **IMMUNITY TESTS**

N°	Test	Coupling port	Frequency range	Test level	Compliance Criterion	Result
I.1	Conducted immunity (*)	Power supply 230Vac	0.15 - 80 MHz	10 V AM80%1kHz	Α	Passed
I.2	Radiated immunity (*)	Enclosure	80 - 1000 MHz 1.4-2GHz 2-2.7GHz	10 V/m 3 V/m 1 V/m AM80%1kHz	Α	Passed
I.3	Electrical Fast Transients / Burst (*)	Power supply 230Vac	5 kHz	+/-2 kV	В	Passed
I.4	Voltage dips and interruptions (*)	Power supply 230Vac	-	0% 1 cycle 40 % 10 cycles 70 % 25 cycles 0% 250 cycles	B C C C	Passed
I.5	Power frequency magnetic field (*)	Enclosure	50 Hz	30 A/m	Α	Passed
I.6	Electrostatic discharges	Enclosure	-	8 kV air discharges 4 kV contact discharges pos and neg.	В	Passed
I.7	Surges (*)	Power supply 230Vac	-	+/- 2 kV common mode +/- 1 kV differential mode	В	Passed

Observations: (*) This test is not accredited by ACCREDIA.

This document has been printed in original on paper reporting the STESEO STACE logo in colour

Date: November 29 th , 2016	Revision: 1
MOD 0.104 B rev.4	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3. **DETAILS OF THE EXECUTED TESTS**

3.1 Test N° E.1: Conducted emissions

Port:	230 Vac power supply
Base standard:	CISPR 16-2-1:2003; CISPR 16-1-2:2004
Limits:	Class B

Frequency [MHz]	Limits [dBµv]			
	Quasi-peak	Average		
0.15 to 0.50	66	56		
0.50 to 5	56	46		
5 to 30	60	50		

3.1.1 **Test facilities**

This test has been executed in the shielded chamber.

3.1.2 EUT Configuration during the test

The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.

Setup of conducted emissions -

This document has been printed in original on paper reporting the	o in colour
Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104 B rev.4	·

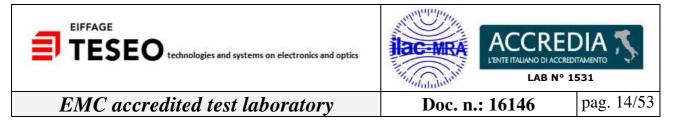
Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.1.3 **EUT** exercise software

None.

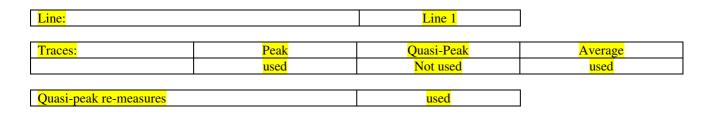
3.1.4 **Special accessories**

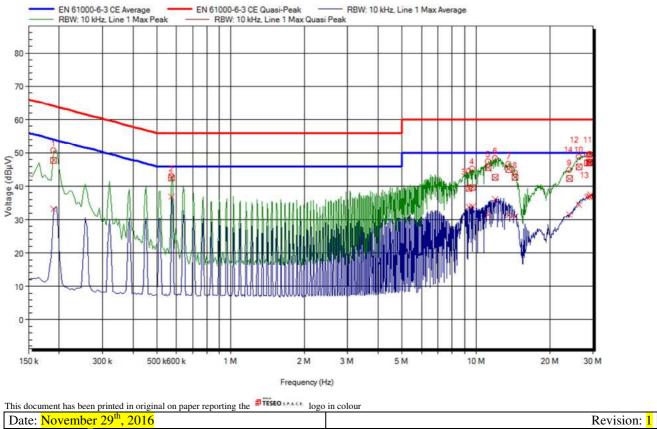

None.

3.1.5 Measurement uncertainty

The expanded uncertainty U (V) is equal to 2.44 dB, with coverage factor k = 2 (confidence level of 95%).

3.1.6 Test equipment used


Instruments	Manufacturer	Model	Certificate Expiry	TESEO ref.
Receiver 9 kHz - 30 MHz	Rohde & Schwarz	ESHS10	2017-03-21	1048
LISN 50 Ω / 50 μH	TESEO	AN32A3PH-1	2017-01-08	1093
Attenuator 10dB	Bird	10dB	2017-01-11	1381
Cable CE	-	RG223U	2017-01-11	1428
Power Source	HP	HP6843A	2017-02-27	1093

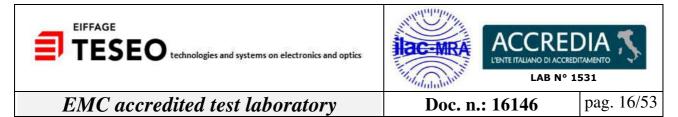

3.1.7 Results

The test is passed.

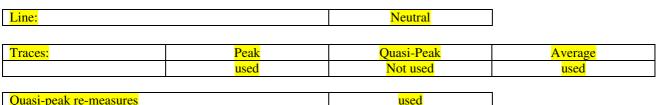
Measurement settings:

28/09/2016 09:53:03 Wednesday September 28th 2016 - LINE L – EUT ON – PASS

MOD 0.104_B rev.4

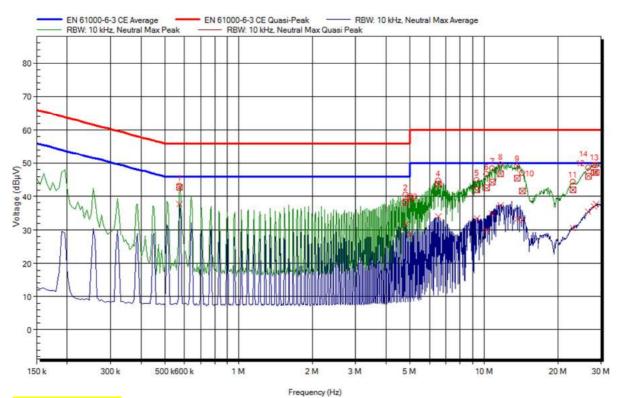

Doc. n.: 16146

pag. 15/53


Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Detected Peaks:

Peak	Frequency	Peak	Average	Average	Average	Quasi-	Quasi-	Quasi-	Status
Number				Limit	Difference	Peak	Peak Limit	Peak Difference	
1	<mark>190 kHz</mark>	<mark>50,63</mark> dΒμV	<mark>33,22</mark> dBµV	<mark>54,04</mark> dBμV	<mark>-20,82 dB</mark>	<mark>47,84</mark> dΒμV	64,04 dBμV	-16,2 dB	Pass
<mark>2</mark>	<mark>575 kHz</mark>	<mark>43,14</mark> dΒμV	<mark>36,8</mark> dBµV	<mark>46 dBμV</mark>	<mark>-9,2 dB</mark>	<mark>42,63</mark> dBμV	<mark>56</mark> dBμV	<mark>-13,37 dB</mark>	Pass
<mark>3</mark>	<mark>9,35 MHz</mark>	<mark>44,46</mark> dΒμV	<mark>33,81</mark> dΒμV	<mark>50 dBμV</mark>	<mark>-16,19 dB</mark>	<mark>39,37</mark> dΒμV	60 dBμV	<mark>-20,63 dB</mark>	Pass
<mark>4</mark>	9,67 MHz	<mark>45,21</mark> dΒμV	<mark>33,93</mark> dBµV	<mark>50 dBμV</mark>	<mark>-16,07 dB</mark>	<mark>39,78</mark> dΒμV	<mark>60</mark> dBμV	<mark>-20,22 dB</mark>	Pass
<mark>5</mark>	11,2 MHz	47,4 dBμV	<mark>31,42</mark> dBμV	<mark>50 dBμV</mark>	<mark>-18,58 dB</mark>	<mark>45,68</mark> dBμV	60 dBμV	<mark>-14,32 dB</mark>	Pass
<mark>6</mark>	<mark>11,975</mark> MHz	<mark>48,38</mark> dΒμV	<mark>36,04</mark> dBµV	<mark>50 dBμV</mark>	<mark>-13,96 dB</mark>	<mark>42,71</mark> dΒμV	<mark>60</mark> dBμV	<mark>-17,29 dB</mark>	Pass
7	13,57 MHz	<mark>46,72</mark> dΒμV	<mark>31,38</mark> dBµV	<mark>50 dBμV</mark>	<mark>-18,62 dB</mark>	<mark>45,19</mark> dBμV	<mark>60</mark> dBμV	<mark>-14,81 dB</mark>	Pass
<mark>8</mark>	<mark>14,405</mark> MHz	<mark>44,16</mark> dBμV	<mark>30,99</mark> dBµV	<mark>50 dBμV</mark>	<mark>-19,01 dB</mark>	<mark>42,79</mark> dBμV	60 dBμV	<mark>-17,21 dB</mark>	Pass
<mark>9</mark>	24,07 MHz	<mark>44,83</mark> dBμV	<mark>31,44</mark> dΒμV	<mark>50 dBμV</mark>	<mark>-18,56 dB</mark>	<mark>42,31</mark> dBμV	<mark>60</mark> dBμV	<mark>-17,69 dB</mark>	Pass
<mark>10</mark>	26,31 MHz	<mark>48,64</mark> dΒμV	<mark>34,42</mark> dBµV	<mark>50 dBμV</mark>	<mark>-15,58 dB</mark>	<mark>45,94</mark> dBμV	60 dBμV	<mark>-14,06 dB</mark>	Pass
<mark>11</mark>	28,55 MHz	<mark>49,4</mark> dΒμV	<mark>36,6</mark> dBµV	<mark>50 dBμV</mark>	<mark>-13,4 dB</mark>	<mark>47,04</mark> dΒμV	<mark>60</mark> dBμV	<mark>-12,96 dB</mark>	Pass
<mark>12</mark>	29,0 <mark>65</mark> MHz	49,49 dBμV	<mark>36,81</mark> dBµV	<mark>50 dBμV</mark>	<mark>-13,19 dB</mark>	<mark>47,14</mark> dΒμV	60 dBμV	<mark>-12,86 dB</mark>	Pass
<mark>13</mark>	29,385 MHz	49,5 dBμV	<mark>37,39</mark> dBµV	<mark>50 dBμV</mark>	<mark>-12,61 dB</mark>	47,01 dBμV	60 dBμV	<mark>-12,99 dB</mark>	Pass
<mark>14</mark>	29,19 MHz	49,16 dBμV	<mark>36,77</mark> dBµV	<mark>50 dBμV</mark>	<mark>-13,23 dB</mark>	47,08 dBμV	60 dBμV	<mark>-12,92 dB</mark>	Pass



Measurement settings:

Quasi-peak re-measures

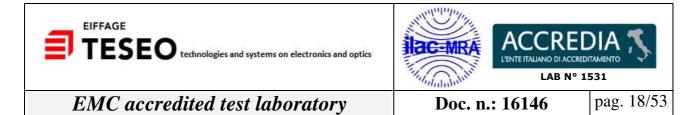
28/09/2016 10:16:11 Wednesday September 28th 2016 - LINE N – EUT ON – PASS

Detected Peaks:

Peak Number	Frequency	<mark>Peak</mark>	Average	<mark>Average</mark> Limit	Average Difference	<mark>Quasi-</mark> Peak	<mark>Quasi-</mark> Peak Limit	Quasi- Peak Difference	Status
1	<mark>575 kHz</mark>	<mark>43,26</mark> dΒμV	<mark>37,53</mark> dBµV	<mark>46</mark> dBµV	<mark>-8,47 dB</mark>	<mark>42,81</mark> dΒμV	56 dBμV	-13,19 dB	Pass
<mark>2</mark>	4,8 MHz	<mark>40,44</mark> dΒμV	<mark>31,63</mark> dΒμV	46 dBµV	<mark>-14,37 dB</mark>	38,21 dBμV	<mark>56</mark> dBμV	<mark>-17,79 dB</mark>	Pass
<mark>3</mark>	<mark>4,995</mark>	<mark>40,02</mark>	<mark>28,54</mark>	<mark>46</mark>	<mark>-17,46 dB</mark>	<mark>39,27</mark>	<mark>56</mark>	<mark>-16,73 dB</mark>	Pass

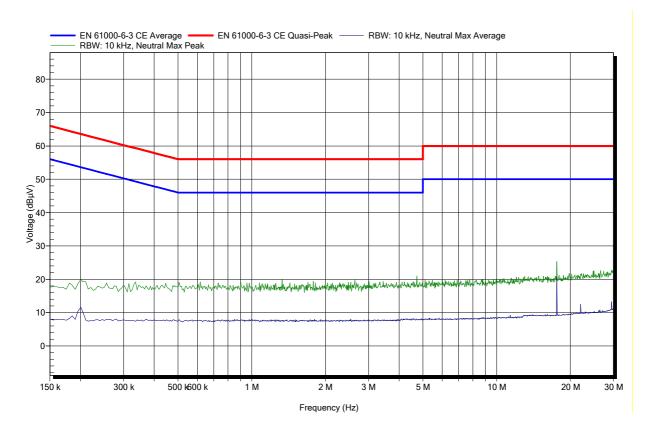
This document has been printed in original on paper reporting the TESEO SPACE logo in colour

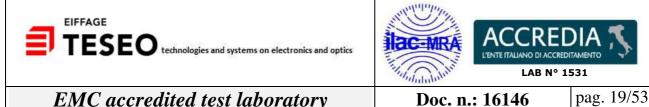
Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104_B rev. <mark>4</mark>	



Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

	MHz	dBµV	dBµV	<mark>dΒμV</mark>		<mark>dBμV</mark>	dBµV		
<mark>4</mark>	6,53 MHz	<mark>44,71</mark>	<mark>33,96</mark>	<mark>50</mark>	<mark>-16,04 dB</mark>	<mark>43,66</mark>	<mark>60</mark>	<mark>-16,34 dB</mark>	Pass
		<mark>dΒμV</mark>	dBµV	<mark>dΒμV</mark>		<mark>dΒμV</mark>	<mark>dΒμV</mark>		
<mark>5</mark>	<mark>9,345</mark>	<mark>44,8</mark>	<mark>33,47</mark>	<mark>50</mark>	<mark>-16,53 dB</mark>	<mark>41,93</mark>	<mark>60</mark>	<mark>-18,07 dB</mark>	Pass
	MHz	<mark>dΒμV</mark>	dBµV	<mark>dΒμV</mark>		<mark>dΒμV</mark>	<mark>dΒμV</mark>		
<mark>6</mark>	<mark>10,235</mark>	<mark>46,54</mark>	<mark>29,86</mark>	<mark>50</mark>	<mark>-20,14 dB</mark>	<mark>42,5</mark>	<mark>60</mark>	<mark>-17,5 dB</mark>	Pass
	MHz	dBµV	dBµV	<mark>dΒμV</mark>		dBµV	<mark>dBμV</mark>		
<mark>7</mark>	10,815	48,38	34,7	<mark>50</mark>	<mark>-15,3 dB</mark>	44,23	60	-15,77 dB	Pass
	MHz	dBµV	<mark>dΒμV</mark>	<mark>dΒμV</mark>		dBµV	<mark>dΒμV</mark>		
<mark>8</mark>	<mark>11,65</mark>	<mark>49,57</mark>	37,17	<mark>50</mark>	-12,83 dB	46,75	<mark>60</mark>	-13,25 dB	Pass
	MHz	<mark>dΒμV</mark>	dBµV	<mark>dΒμV</mark>		<mark>dΒμV</mark>	<mark>dΒμV</mark>		
<mark>9</mark>	13,63	<mark>49,01</mark>	33,25	<mark>50</mark>	-16,75 dB	<mark>45,38</mark>	<mark>60</mark>	-14,62 dB	Pass
	MHz	dBµV	dBµV	dBµV		dBµV	<mark>dΒμV</mark>		
<mark>10</mark>	14,335	46,99	32,86	50 ⁻	<mark>-17,14 dB</mark>	41,64	60	<mark>-18,36 dB</mark>	Pass
	MHz	dBµV	dBµV	dBµV		dBµV	<mark>dΒμV</mark>		
<mark>11</mark>	23,05	44,3	30,56	<mark>50</mark>	<mark>-19,44 dB</mark>	41,99	60	<mark>-18,01 dB</mark>	Pass
	MHz	dBµV	dBµV	dBµV		dBµV	<mark>dΒμV</mark>		
<mark>12</mark>	26,635	48,46	35,4	50	-14,6 dB	46,11	60	-13,89 dB	Pass
	MHz	dBµV	dBµV	dΒμV		dBµV	<mark>dΒμV</mark>		
<mark>13</mark>	28,235	49,36	36,8	50	<mark>-13,2 dB</mark>	47,13	60	-12,87 dB	Pass
	MHz	dBµV	dBµV	dBμV		dBµV	dBµV		
<mark>14</mark>	28,62	49,33	37,65	50	-12,35 dB	47,18	60	-12,82 dB	Pass
•	MHz	dBµV	dBµV	dΒμV	,	dBµV	dBuV	,0_ 00	

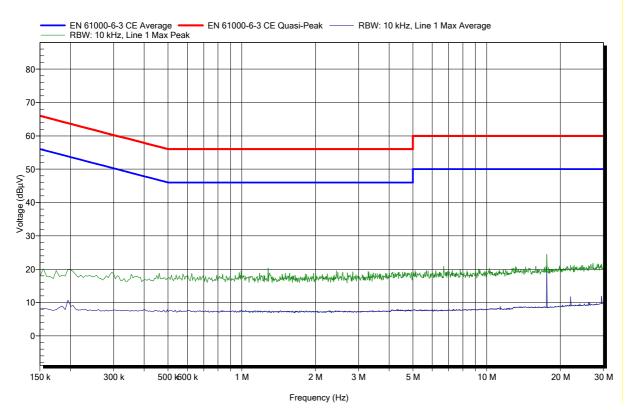

This document has been printed in original on paper reporting the **TESEO** TRACE logo in colour Date: November 29th, 2016 MOD 0.104_B rev.


Measurement settings:

Line/Linea:	Neutral		
Traces/Trace:	Peak/Picco	Quasi-Peak/ Quasi-Picco	Average/Media
	used	not used	used
<mark>Quasi-Peak re-measures/</mark> Ricalcoli di Quasi-Picco:	used		

28/09/2016 10:14:50 Wednesday September 28th 2016 - LINE N – NOISE

Date: November 29 th , 2016	Revision: 1
MOD 0.104 B rev.4	· · · · · · · · · · · · · · · · · · ·


Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Measurement settings/Parametri di misura:

Line:	Line 1		
Traces/Trace:	Peak	Quasi-Peak	Average
	used	not used	used

28/09/2016 10:54:27 Wednesday September 28th 2016 - LINE L – NOISE

3.1.8 **Comments**

This test is not accredited by ACCREDIA.

Operator:

Andrea Buczkowsky

This document has been printed in original on paper reporting the STESEO SPACE logo in colour

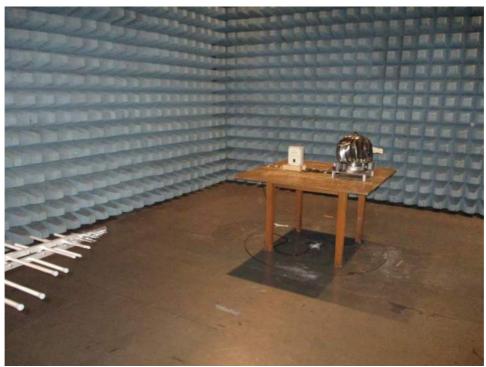
Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev.4	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.2 Test N° E.2: Radiated emissions

Port:	Enclosure
Base standard:	CISPR 16-2-3:2003
Limits :	


Frequency [MHz]	Limits [dBµV/m] at 3 m
30 - 230	40 quasi-peak
230 - 1000	47 quasi-peak

3.2.1 **Test facilities**

This test has been executed in semianechoic chamber.

3.2.2 EUT Configuration during the test

The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.

Radiated emission set-up

3.2.3 **EUT** exercise software

None.

This document has been printed in original on paper reporting the

This document has been printed in original on paper reporting the	
Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104 B rev. <mark>4</mark>	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.2.4 **Special accessories**

None.

3.2.5 **Measurement uncertainty**

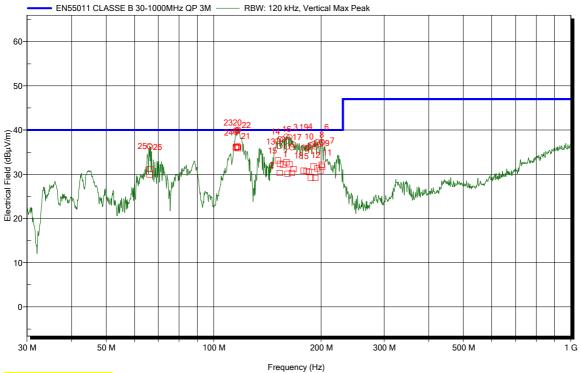
The expanded uncertainty U (V) is equal to 6 dB, with coverage factor k = 2 (confidence level of 95%).

3.2.6 Test equipment used

Instruments	Manufacturer	Model	TESEO ref.
EMI Test Receiver	Rohde & Schwarz	ESVS10	1061
Antenna Trilog	SCHWARZBECK	VULB 9162	1416

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002


3.2.7 Results

The test is passed.

Measurement settings:

Polarization/Polarizzazione:	Vertical]	
Antenna Distance	<mark>3 m</mark>		
Traces:	Peak/Picco	<mark>Quasi-Peak</mark>	Average
	used	not used	not used
Quasi-Peak re-measures:	used		

29/09/2016 10:05:01 Thursday September 29th, 2016 – PV – ON – PASS

Detected Peaks:

Peak	Frequency	Peak 1	Quasi-	Quasi-Peak	Quasi-Peak	Angle	Height	<mark>Status</mark>
Number			Peak	Limit	Difference			
20	<mark>116.35</mark>	<mark>39.93</mark>	<mark>36.26</mark>	40 dBµV/m	-3.74 dB	<mark>270</mark>	<mark>1 m</mark>	Pass
	MHz	<mark>dBµV/m</mark>	dBµV/m			Degree		

This document has been printed in original on paper reporting the TESEO STACE logo in colour

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev.4	

pag. 23/53

EMC accredited test laboratory

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

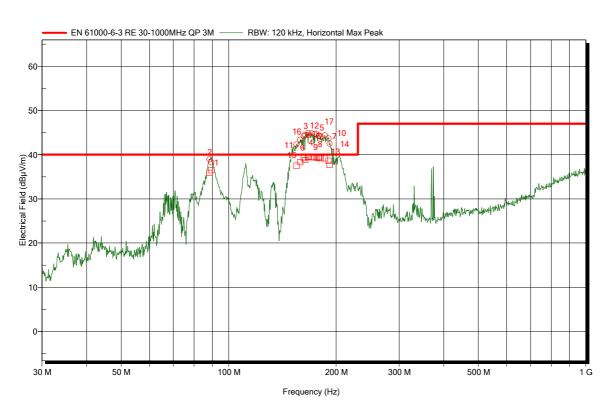
<mark>24</mark>	115.5 MHz	<mark>39.53</mark> dBµV/m	<mark>36.19</mark> dBµV/m	<mark>40 dBμV/m</mark>	<mark>-3.81 dB</mark>	270 Degree	<mark>1 m</mark>	Pass
21	<mark>116.65</mark> MHz	39.79 dBµV/m	36.14 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-3.86 dB</mark>	270 Degree	<mark>1 m</mark>	Pass
<mark>23</mark>	115.35 MHz	39.9 dBµV/m	36.05 dBµV/m	40 dBµV/m	-3.95 dB	270 Degree	<mark>1 m</mark>	Pass
<mark>22</mark>	117 MHz	40.08 dBμV/m	35.91 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-4.09 dB</mark>	270 Degree	<mark>1 m</mark>	Pass
<mark>13</mark>	151.2 MHz	37.45 dBμV/m	$\frac{33.13}{\text{dB}\mu \text{V/m}}$	<mark>40 dBμV/m</mark>	<mark>-6.87 dB</mark>	270 Degree	<mark>2 m</mark>	Pass
<mark>16</mark>	159.75 MHz	$\frac{38.51}{dB\mu V/m}$	$\frac{32.7}{dB\mu V/m}$	<mark>40 dBμV/m</mark>	-7.3 dB	270 Degree	<mark>2 m</mark>	Pass
<mark>14</mark>	153.4 MHz	37.97 dBμV/m	32.37 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-7.63 dB</mark>	270 Degree	<mark>2 m</mark>	Pass
<mark>17</mark>	163.05 MHz	38.39 dBµV/m	32.29 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-7.71 dB</mark>	270 Degree	<mark>2 m</mark>	Pass
<mark>15</mark>	156.45 MHz	37.87 dBμV/m	32.19 dBµV/m	<mark>40 dBμV/m</mark>	-7.81 dB	270 Degree	<mark>2 m</mark>	Pass
<mark>8</mark>	200.45 MHz	37.37 dBμV/m	$\frac{32.16}{dB\mu V/m}$	<mark>40 dBμV/m</mark>	-7.84 dB	90 Degree	<mark>2 m</mark>	Pass
<mark>10</mark>	190.25 MHz	36.85 dBμV/m	$\frac{31.79}{\text{dB}\mu \text{V/m}}$	<mark>40 dBμV/m</mark>	<mark>-8.21 dB</mark>	90 Degree	<mark>1 m</mark>	Pass
<mark>9</mark>	201.15 MHz	37.11 dBµV/m	31.7 dBµV/m	<mark>40 dBµV/m</mark>	<mark>-8.3 dB</mark>	90 Degree	<mark>2 m</mark>	Pass
<mark>11</mark>	194.9 MHz	37.26 dBµV/m	31.33 dBµV/m	<mark>40 dBµV/m</mark>	<mark>-8.67 dB</mark>	90 Degree	<mark>1 m</mark>	Pass
<mark>26</mark>	66.4 MHz	36.2 dBµV/m	31.2 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-8.8 dB</mark>	270 Degree	<mark>1 m</mark>	Pass
<mark>18</mark>	167.3 MHz	36.71 dBμV/m	31.2 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-8.8 dB</mark>	270 Degree	<mark>2 m</mark>	Pass
<mark>12</mark>	199.05 MHz	36.87 dBμV/m	30.86 dBµV/m	40 dBµV/m	<mark>-9.14 dB</mark>	90 Degree	<mark>1 m</mark>	Pass
<mark>19</mark>	178.55 MHz	36.04 dBμV/m	30.81 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-9.19 dB</mark>	270 Degree	<mark>2 m</mark>	Pass
<mark>4</mark>	182.05 MHz	35.81 dBµV/m	30.73 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-9.27 dB</mark>	90 Degree	<mark>2 m</mark>	Pass
<mark>5</mark>	184.7 MHz	36.06 dBμV/m	30.51 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-9.49 dB</mark>	90 Degree	<mark>2 m</mark>	Pass
<mark>3</mark>	165.55 MHz	36.08 dBμV/m	30.31 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-9.69 dB</mark>	90 Degree	<mark>2 m</mark>	Pass
1	153.05 MHz	36.38 dBμV/m	30.27 dBµV/m	<mark>40 dBμV/m</mark>	-9.73 dB	90 Degree	<mark>2 m</mark>	Pass
2	160.85 MHz	36.28 dBμV/m	30.12 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-9.88 dB</mark>	90 Degree	<mark>2 m</mark>	Pass
<mark>25</mark>	66.1 MHz	36.41 dBμV/m	29.95 dBµV/m	<mark>40 dBμV/m</mark>	-10.05 dB	270 Degree	<mark>1 m</mark>	Pass
<mark>6</mark>	187 MHz	36.64 dBµV/m	29.25 dBµV/m	<mark>40 dBμV/m</mark>	-10.75 dB	90 Degree	<mark>2 m</mark>	Pass
<mark>7</mark>	192.6 MHz	36.28 dBµV/m	29.18 dBµV/m	<mark>40 dBμV/m</mark>	<mark>-10.82 dB</mark>	90 Degree	<mark>2 m</mark>	Pass

This document has been printed in original on paper reporting the **TESEO** SPACE logo in colour

Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104_B rev. <mark>4</mark>	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002


Measurement settings/Parametri di misura:

Quasi-Peak re-measures

Polarization:	Horizontal		
Antenna Distance	<mark>3 m</mark>		
Traces:	Peak	Quasi-Peak	<i>Average</i>
		2	

used

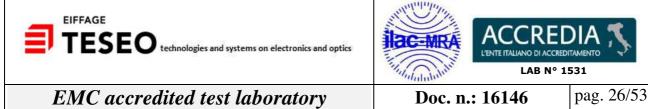
29/09/2016 10:53:50 Thursday September 29th, 2016 – PO – ON – PASS

Detected Peaks:

Peak Number	Frequency	Peak	<mark>Quasi-</mark> Peak	<mark>Quasi-Peak</mark> Limit	Quasi-Peak Difference	Angle	Height	Status
<mark>5</mark>	179 MHz	44.32 dBµV/m	39.55 dBµV/m	<mark>40 dBμV/m</mark>	-0.45 dB	0 Degree	<mark>2 m</mark>	Pass
<mark>4</mark>	<mark>167.25</mark> MHz	44.43 dBµV/m	39.54 dBμV/m	<mark>40 dBμV/m</mark>	-0.46 dB	0 Degree	<mark>2 m</mark>	Pass
12	173.6 MHz	44.63 dBµV/m	39.54 dBμV/m	<mark>40 dBµV/m</mark>	-0.46 dB	0 Degree	<mark>2 m</mark>	Pass
3	<mark>166.7</mark> MHz	<mark>44.86</mark> dBμV/m	<mark>39.47</mark> dBµV/m	<mark>40 dBµV/m</mark>	-0.53 dB	0 Degree	<mark>2 m</mark>	Pass

This document has been printed in original on paper reporting the TESEO STACE logo in colour

Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104_B rev.4	

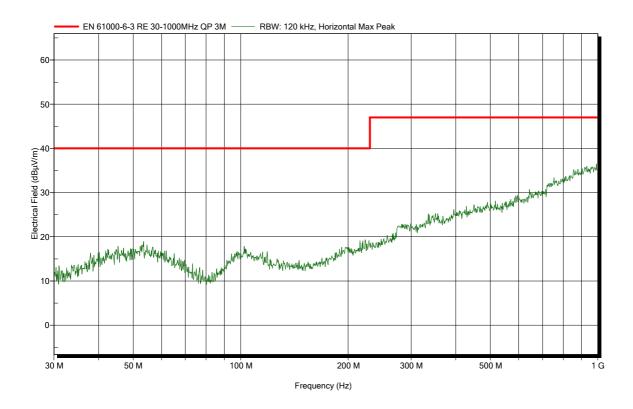


pag. 25/53

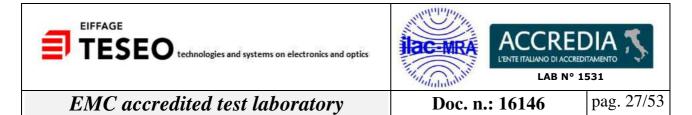
EMC accredited test laboratory

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

<mark>8</mark>	170.95	<mark>44.82</mark>	<mark>39.4</mark>	<mark>40 dBµV/m</mark>	<mark>-0.6 dB</mark>	0 Degree	<mark>2 m</mark>	Pass
	MHz	dBµV/m	dBµV/m					
<mark>17</mark>	176.2	<mark>44.67</mark>	<mark>39.34</mark>	<mark>40 dBμV/m</mark>	<mark>-0.66 dB</mark>	0 Degree	<mark>2 m</mark>	Pass
	MHz	dBµV/m	dBµV/m					
<mark>7</mark>	<mark>178.45</mark>	<mark>44.22</mark>	<mark>39.33</mark>	<mark>40 dBµV/m</mark>	<mark>-0.67 dB</mark>	<mark>180</mark>	<mark>2 m</mark>	Pass
	MHz	dBµV/m	dBµV/m			Degree		
<mark>16</mark>	<mark>162.3</mark>	<mark>44.17</mark>	<mark>39.24</mark>	<mark>40 dBµV/m</mark>	<mark>-0.76 dB</mark>	0 Degree	<mark>2 m</mark>	Pass
	MHz	<mark>dBµV/m</mark>	dBµV/m					
<mark>13</mark>	<mark>180.95</mark>	<mark>44.13</mark>	<mark>39.22</mark>	<mark>40 dBµV/m</mark>	<mark>-0.78 dB</mark>	0 Degree	<mark>2 m</mark>	Pass
	<mark>MHz</mark>	<mark>dBµV/m</mark>	dBµV/m					
<mark>9</mark>	<mark>185.95</mark>	<mark>44.36</mark>	<mark>39.2</mark>	<mark>40 dBµV/m</mark>	<mark>-0.8 dB</mark>	0 Degree	<mark>2 m</mark>	Pass
	<mark>MHz</mark>	<mark>dBµV/m</mark>	dBµV/m					
<mark>6</mark>	<mark>163.65</mark>	<mark>44.46</mark>	<mark>38.79</mark>	<mark>40 dBµV/m</mark>	<mark>-1.21 dB</mark>	<mark>180</mark>	<mark>2 m</mark>	Pass Pass
	MHz	dBµV/m	dBµV/m			Degree		
<mark>10</mark>	<mark>190.15</mark>	<mark>43.68</mark>	<mark>38.61</mark>	<mark>40 dBµV/m</mark>	<mark>-1.39 dB</mark>	0 Degree	<mark>1 m</mark>	Pass Pass
	MHz	dBµV/m	dBµV/m					
11	<mark>158.45</mark>	<mark>43.37</mark>	<mark>38.32</mark>	<mark>40 dBµV/m</mark>	<mark>-1.68 dB</mark>	0 Degree	<mark>2 m</mark>	Pass
	MHz	dBµV/m	dBµV/m					
<mark>14</mark>	<mark>191.7</mark>	<mark>42.48</mark>	<mark>37.68</mark>	<mark>40 dBμV/m</mark>	<mark>-2.32 dB</mark>	<mark>180</mark>	<mark>1 m</mark>	Pass
	MHz	dBµV/m	dBµV/m			Degree		
<mark>15</mark>	<mark>154.7</mark>	<mark>42.28</mark>	<mark>37.48</mark>	<mark>40 dBμV/m</mark>	<mark>-2.52 dB</mark>	<mark>0 Degree</mark>	<mark>2 m</mark>	Pass
	MHz	dBµV/m	dBµV/m					
1	<mark>89.45</mark>	<mark>38.26</mark>	<mark>36.49</mark>	<mark>40 dBμV/m</mark>	<mark>-3.51 dB</mark>	0 Degree	<mark>2.5 m</mark>	Pass
	MHz	<mark>dBµV/m</mark>	dBµV/m					
2	<mark>88.4 MHz</mark>	<mark>38.93</mark>	<mark>35.91</mark>	<mark>40 dBμV/m</mark>	<mark>-4.09 dB</mark>	<mark>180</mark>	<mark>2.5 m</mark>	Pass
		dBµV/m	dBµV/m			Degree		

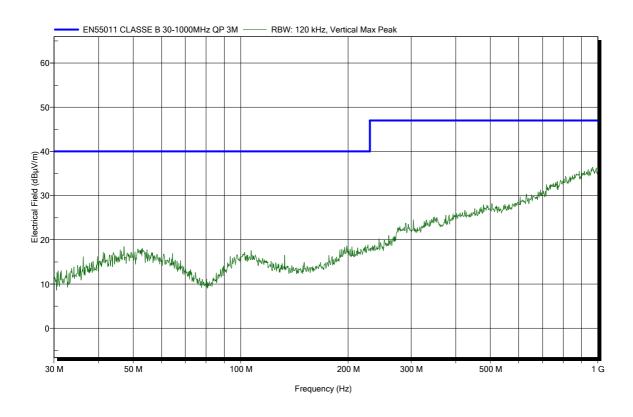

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002


Measurement settings:

	<mark>Horizontal</mark>		
Antenna Distance	<mark>3 m</mark>		
	.		
Traces:	<u>Peak</u>	<mark>Quasi-Peak</mark>	<u>Average</u>
	used	not used	not used

29/09/2016 11:36:53 Thursday September 29th, 2016 – PO – NOISE


Date: November 20 th 2016	Devision: 1
Date. November 29, 2010	Kevisioli. 1
MOD 0.104 B rev 4	

Measurement settings:

Polarization:	Vertical		
Antenna Distance	<mark>3 m</mark>		
Traces:	Peak	Quasi-Peak	Average
11405.	used	not used	<u>Average</u> not used

29/09/2016 11:45:38 Thursday September 29th, 2016 – PV – NOISE

3.2.8 Comments

This test is not accredited by ACCREDIA.

Operator: Ilario Molon

This document has been printed in original on paper reporting the **TESEO** APACE logo in colour

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev.4	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.3 Test N° E.3: Harmonic current emissions

230 Vac power supply Port: EN 61000-3-2:2006 /A1 /A2:2009 **Base standard:** Limit: Class A

3.3.1 **Test facilities**

This test has been executed in the automatic test bench.

3.3.2 EUT Configuration during the test

The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.

3.3.3 **EUT** exercise software

None.

3.3.4 **Special accessories**

None.

Test equipment used 3.3.5

Instruments	Manufacturer	Model	TESEO ref.
Harmonic / Flicker test system	HP	6843A	1051

3.3.6 Results

The test is passed.

This document has been printed in original on paper reporting the **TESEO** states logo in colour

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev. <mark>4</mark>	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

IEC 1000-3-2/EN 61000-3-2 Current Harmonics Test Date Performed: 09/28/16 Test Executed By: Buczkowsky Andrea Company Name: TESEO Test Description: Armoniche Device Under Test ID: Aspiratore eolico mot. Test ID: 16146

Final Test Result: PASS

Settings and Test Conditions Compliant to the Standard: Yes

Test Equipment Used:

Agilent 6843A Harmonic/Flicker Test System with serial number: HFTS Software Version: B.00.01 Date Last Calibrated:

Test Equipment Settings:

Current Measurement Range: High Measurement Window Type: Rectangular Measurement Delay: 10 seconds Current Harmonics Test Duration: 150.00 seconds Line Voltage: 230.00 V Line Frequency: 50 Hz Device Class: A RMS Current Limit: 16.2 A Peak Current Limit: 0.0 A Number of Records: 468 Current Harmonics lest Duration Pre-test Duration: 10.00 seconds

Overrides:

Test Limit Source (Power Measurements/Statistics): N/A Power Overrides: N/A Test Limit Overrides: None

Pre-test Results:

	age THD Out-of-Specification?: mmental Current: 0.331 A	No				
Test Results:						
Test Results Limit Parameters within +/-10 percent: Yes Maximum Power : 21.1 W Fundamental Current : 0.333 A Power Factor : 0.230 Partial Odd Harmonic Current from Limits : 0.25 Measured Partial Odd Harmonic Current : 0.01						
Active Power Statistics:						
100th Percentile: 21.3 W 90th Percentile: 21.1 W	99th Percentile: 21.1 W 50th Percentile: 20.7 W	95th Percentile: 21.1				
Total Number of Failures:	Total Number of E	crors:				
None	None					

This document has been printed in original on paper reporting the

Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104_B rev.4	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Pre-Test Source Voltage Harmonics Data:

Harmonic	Limit	Limit	Max	Max
Number	(%)	(Volts)	(%)	(Volts)
Fund.			100.0	229.844
	0.20	0.460	0.014	0.031
3	0.90	2.069	0.110	0.254
4	0.20	0.460	0.007	0.017
5	0.40	0.919	0.012	0.028
6	0.20	0.460	0.006	0.013
7	0.30	0.690	0.012	0.027
8	0.20	0.460	0.003	0.006
9	0.20	0.460	0.017	0.039
	0.20	0.460	0.003	0.006
	0.10	0.230	0.015	0.034
	0.10	0.230	0.005	0.011
	0.10	0.230	0.017	0.039
	0.10	0.230	0.003	0.008
	0.10	0.230	0.013	0.029
	0.10	0.230	0.003	0.007
	0.10	0.230	0.000	0.026
	0.10	0.230	0.001	0.028
	0.10	0.230	0.003	0.016
	0.10	0.230	0.003	0.006
	0.10	0.230	0.003	0.015
	0.10	0.230	0.003	0.006
	0.10	0.230	0.003	0.007
	0.10	0.230	0.003	0.007
	0.10	0.230	0.004	0.010
	0.10	0.230	0.004	0.008
	0.10	0.230	0.005	0.012
	0.10	0.230	0.003	0.007
	0.10	0.230	0.005	0.011
	0.10	0.230	0.002	0.004
31	0.10	0.230	0.005	0.011
32	0.10	0.230	0.002	0.005
33	0.10	0.230	0.005	0.011
	0.10	0.230	0.002	0.004
	0.10	0.230	0.003	0.006
	0.10	0.230	0.002	0.004
	0.10	0.230	0.002	0.005
	0.10	0.230	0.002	0.005
	0.10	0.230	0.002	0.006
		0.230	0.002	0.006
40	0.10			

Doc. n.: 16146

pag. 31/53

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

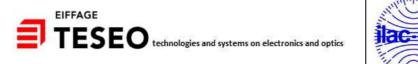
Final Test Data:

Harmonic	Standard Limit	Maximum Value	Maximum Value	Mean Value	Mean Value	Standard Deviation	Standard Deviation	Pass or	(P)
Number	(A rms)	(A rms)	(% Limit)	(A rms)	(% Limit)		(% Limit)	Fail	(F)
Fund.	(,	0,3325	(,	0,3311	(,	0,0007	(,		(-)
2	1,0800	0,0099	0,9	0,0054	0,5	0,0026	0,2	Ρ	
3	2,3000	0,0905	3,9	0,0873	3,8	0,0015	0,1	Ρ	
4	0,4300	0,0094	2,2	0,0052	1,2	0,0024	0,6	Ρ	
5	1,1400	0,0840	7,4	0,0811	7,1	0,0014	0,1	P	
6	0,3000	0,0089	3,0	0,0049	1,6	0,0022	0,7	P	
7	0,7700	0,0765	9,9	0,0737	9,6	0,0013	0,2	Ρ	
8	0,2300	0,0080	3,5	0,0045	1,9	0,0020	0,9	Ρ	
9	0,4000	0,0665	16,6	0,0643	16,1	0,0011	0,3	Ρ	
10	0,1840	0,0075	4,1	0,0040	2,2	0,0018	1,0	Р	
11	0,3300	0,0556	16,8	0,0538	16,3	0,0009	0,3	P	
12	0,1533	0,0064	4,2	0,0034	2,2	0,0015	1,0	P	
13	0,2100	0,0443	21,1	0,0429	20,4	0,0007	0,3	Р	
14	0,1314	0,0055	4,1	0,0029	2,2	0,0013	1,0	Ρ	
15	0,1500	0,0334	22,3	0,0322	21,4	0,0006	0,4	P	
16	0,1150	0,0049	4,3	0,0024	2,1	0,0012	1,0	P	
17	0,1324	0,0236	17,8	0,0224	16,9	0,0006	0,4	P	
18	0,1022	0,0040	3,9	0,0020	1,9	0,0010	1,0	Р	
19	0,1184	0,0150	12,7	0,0137	11,6	0,0005	0,5	P	
20	0,0920	0,0035	3,8	0,0016	1,8	0,0009	0,9	P	
21	0,1071	0,0079	7,4	0,0067	6,2	0,0005	0,5	P	
22	0,0836	0,0031	3,7	0,0014	1,6	0,0007	0,9	P	
23	0,0978	0,0026	2,7	0,0015	1,5	0,0005	0,5	P	
24	0,0767	0,0027	3,5	0,0012	1,5	0,0006	0,8	Ρ	
25	0,0900	0,0036	4,0	0,0026	2,9	0,0004	0,5	Ρ	
26	0,0708	0,0021	3,0	0,0009	1,3	0,0005	0,7	P	
27	0,0833	0,0055	6,6	0,0045	5,4	0,0004	0,4	P	
28	0,0657	0,0019	2,8	0,0008	1,2	0,0004	0,6	P	
29	0,0776	0,0060	7,7	0,0052	6,7	0,0003	0,4	P	
30	0,0613	0,0016	2,6	0,0006	1,0	0,0003	0,5	P	
31	0,0726	0,0055	7,6	0,0048	6,6	0,0002	0,3	P	
32	0,0575	0,0014	2,4	0,0005	0,8	0,0003	0,5	P	
33	0,0682	0,0043	6,4	0,0037	5,4	0,0002	0,4	P	
34	0,0541	0,0012	2,2	0,0004	0,7	0,0002	0,4	Ρ	
35	0,0643	0,0032	4,9	0,0023	3,6	0,0003	0,4	P	
36	0,0511	0,0009	1,8	0,0003	0,6	0,0002	0,3	P	
37	0,0608	0,0017	2,7	0,0009	1,5	0,0003	0,5	P	
38	0,0484	0,0009	1,8	0,0003	0,6	0,0001	0,3	P	
39	0,0577	0,0012	2,1	0,0005	0,9	0,0002	0,4	P	
40	0,0460	0,0009	2,0	0,0003	0,6	0,0001	0,3	P	
					==========				

Doc. n.: 16146

pag. 32/53

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

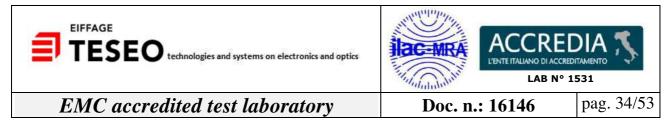

Final Test Statistics:

	Standard	Maximum	Maximum	>50%	>75%	>90%	>95%	>100%	Pass(P)
Harmonic	Limit	Value	Value	of Limit	or Deil(D)				
Number Fund.	(A rms)	(A rms) 0,3325	(% Limit)	(Count)	(Count)	(Count)	(Count)	(Count)	Fail(F)
2	1,0800	0,0099	0,9	0	0	0	0	0	P
3	2,3000	0,0905	3,9	0	0	0	0	0	P
4	0,4300	0,0094	2,2	0	0	0	0	Ő	P
5	1,1400	0,0840	7,4	0	0	0	0	0	P
6	0,3000	0,0089	3,0	0	0	0	0	Ő	P
7	0,7700	0,0765	9,9	0	0	0	0	0	P
8	0,2300	0,0080	3,5	õ	õ	0	Ő	õ	P
9	0,4000	0,0665	16,6	õ	õ	Ő	Ő	õ	P
10	0,1840	0,0075	4,1	0	Ő	Ő	Ő	ŏ	P
11	0,3300	0,0556	16,8	Ő	Ő	0	Ő	Ő	P
12	0,1533	0,0064	4,2	Ő	Ő	Ő	Ő	Ő	P
13	0,2100	0,0443	21,1	0	Ő	Ő	Ő	Ő	P
14	0,1314	0,0055	4,1	0	Ő	0	Ő	Ő	P
15	0,1500	0,0334	22,3	Ő	Ő	0	Ő	Ő	P
16	0,1150	0,0049	4,3	0	0	0	0	0	P
17	0,1324	0,0236	17,8	0	0	0	0	0	P
18	0,1022	0,0040	3,9	0	0	0	0	0	P
19	0,1184	0,0150	12,7	Ō	Ō	0	Ō	Ō	P
20	0,0920	0,0035	3,8	0	0	0	0	0	P
21	0,1071	0,0079	7,4	0	0	0	0	0	P
22	0,0836	0,0031	3,7	0	0	0	0	0	P
23	0,0978	0,0026	2,7	0	0	0	0	0	P
24	0,0767	0,0027	3,5	0	0	0	0	0	P
25	0,0900	0,0036	4,0	0	0	0	0	0	P
26	0,0708	0,0021	3,0	0	0	0	0	0	P
27	0,0833	0,0055	6,6	0	0	0	0	0	P
28	0,0657	0,0019	2,8	0	0	0	0	0	P
29	0,0776	0,0060	7,7	0	0	0	0	0	P
30	0,0613	0,0016	2,6	0	0	0	0	0	P
31	0,0726	0,0055	7,6	0	0	0	0	0	P
32	0,0575	0,0014	2,4	0	0	0	0	0	P
33	0,0682	0,0043	6,4	0	0	0	0	0	P
34	0,0541	0,0012	2,2	0	0	0	0	0	P
35	0,0643	0,0032	4,9	0	0	0	0	0	P
36	0,0511	0,0009	1,8	0	0	0	0	0	P
37	0,0608	0,0017	2,7	0	0	0	0	0	P
38	0,0484	0,0009	1,8	0	0	0	0	0	P
39	0,0577	0,0012	2,1	0	0	0	0	0	P
40	0,0460	0,0009	2,0	0	0	0	0	0	P

Remarks

This document has been printed in original on paper reporting the **TESEO** space logo in colour

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev.4	


Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.3.7 Comments

This test is not accredited by ACCREDIA.

Operator:

Andrea Buczkowsky

3.4 Test N°E.4: Voltage fluctuations and flicker

 Port:
 230Vac power supply

 Base standard:
 EN 61000-3-3:2013

3.4.1 Test facilities

This test has been executed in the automatic test bench.

3.4.2 EUT Configuration during the test

The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.

3.4.3 EUT exercise software

None.

3.4.4 Special accessories

None.

3.4.5 Equipment used

Instruments	Manufacturer	Model	TESEO ref.
Harmonic / Flicker test system	HP	6843A	1051

The test is passed.

Doc. n.: 16146

pag. 35/53

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

IEC 1000-3-3/EN 61000-3-3 Voltage Fluctuation and Flicker Test Date Performed: 09/28/16

Test Executed By:	Buczkowsky .	Andrea
Company	Name: TESE	0
Test Descri	ption: Flic	ker
Device Under Te	st ID: Aspi	ratore eolico mot.
Te	st ID: 1614	6

Final Test Result: PASS

Settings and Test Conditions Compliant to the Standard: Yes

Test Equipment Used:

Agilent 6843A Harmonic/Flicker Test System with serial number: HFTS Software Version: B.00.01 Date Last Calibrated:

Test Equipment Settings:

Line Voltage: 230.00 V Line Frequency: 50 Hz Measurement Delay: 10.0 seconds RMS Current Limit: 16.2 A

Pst Integration Time: 10 minutes Pst Integration Periods: 1 Test Duration: 00:10:00 Peak Current Limit: 0.0 A

Overrides: _____

Pst/Plt Test Limit Overrides: None RMS Test Limit Overrides: None

Equipment Under Test Pre-test Results:

Freque	oltage: ency: ge THD:	50.0 Hz	RMS Current: Peak Current: Current THD:	1.6 A	Real Power: 19.7 W Apparent Power: 90.4 VA Power Factor: 0.218
Total		of Failures:			Total Number of Errors:
Pst: Plt:	0 0	Dc: Dmax:			None

This document has been printed in original on paper reporting the TESEO SPACE logo in colour

Dmax: 0 Dt:

0

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev. <mark>4</mark>	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Final Test Summary:

Dmax: 0.0 Dc: 0.0 Dt: 0.00	Pst: 0.07 Plt: 0.07 Plt Threshold:	0.65	P_0.1: 0.01 P_1s: 0.01 P_3s: 0.01 P_10s: 0.01 P_50s: 0.01
----------------------------------	--	------	---

Final Test Data by Integration Period:

Number of Integration Periods: 1

Integration Periods (P_0.1 (P.U.)		P_3.0s (P.U.)	P_10s (P.U.)	P_50s (P.U.)	DC (응)	Dmax (%)	Dt (seconds)	Pass(P) or Fail(F)
1	0.07	0.01	0.01	0.01	0.01	0.01 -				========= N/A

Remarks

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.4.7 Comments

This test is not accredited by ACCREDIA.

Operator:

Andrea Buczkowsky

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Test N° I.1: Conducted Immunity 3.5

	Voltage L	evel (e.m.f.)
10V, AM 80% 1kHz		
Α		
EN 61000-4-6:2014		
230	Vac power supp	ly
	EN A	A 10V, AM 80% 1kHz

Enoquency [MH7]	Voltage Level (e.m.f.)		
Frequency [MHz]	V	AM	
0.150 – 80 MHz	3	80% 1 kHz	

3.5.1 **Test facilities**

This test has been executed in the automatic test bench.

3.5.2 EUT Configuration during the test

The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev. <mark>4</mark>	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Conducted immunity set-up

3.5.3 **EUT** exercise software

None.

3.5.4 **Special accessories**

None.

3.5.5 Measurement uncertainty

The expanded uncertainty U (V) is equal to 2.7 dB.

3.5.6 Test equipment used

Instruments	Manufacturer	Model	TESEO ref.
Signal Generator 0.1-1040MHz	HP	8657A	1031
Amplifier RF	AR	75A250	1089
Attenuator 10 dB	JFW industries	50FP-010-H6	1435
Attenuator 6 dB	Pasternack	PE 7021-6	1343
CDN	MEB	M3	1012

3.5.7 Execution of the test

The test is done whit steps of frequency: 1% of the fundamental.

3.5.8 **Results**

The verifying of the device working properly has been done by means of the rotation of the fan. The test is passed with performance criterion A (see 1.8.4).

3.5.9 Comments

This test is not accredited by ACCREDIA.

Operator: Simone Papi

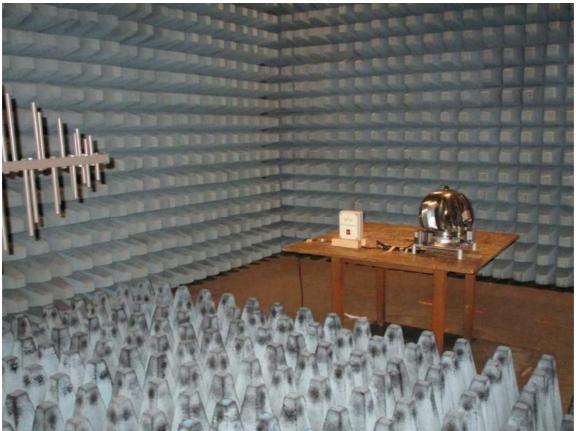
This document has been printed in original on paper reporting the

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev. <mark>4</mark>	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Test N° I.2: Irradiated Immunity 3.6


Port:	Enclosure
Base standard:	<i>IEC 61000-4-3:2006</i> + <i>A1:2008</i> + <i>A2:2010</i>
Compliance criterion:	A
limitations:	10 V/m, 80 - 1000MHz, 3 V/m 1.4-2GHz, 1 V/m 2-2.7GHz; AM 80% 1kHz

3.6.1 **Test facilities**

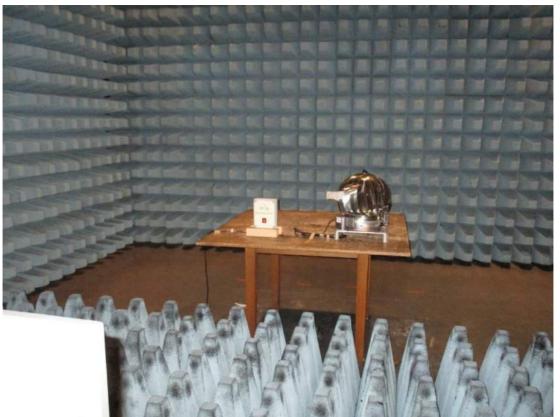
This test has been executed inside the anechoic chamber.

3.6.2 EUT Configuration during the test

The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.

Radiated immunity test 80 to 1000MHz

This document has been printed in original on paper reporting the TESEO state logo in colour		
Date: November 29 th , 2016	Revision: <mark>1</mark>	
MOD 0.104_B rev.4		



Doc. n.: 16146

pag. 41/53

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Radiated immunity test 1400 to 2700MHz

3.6.3 EUT exercise software

None.

3.6.4 **Special accessories**

None.

3.6.5 Measurement uncertainty

Measurement uncertainty is ± 4.6 dB.

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Equipment used 3.6.6

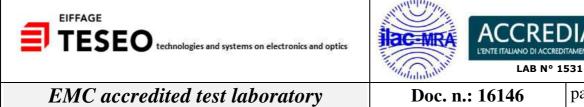
Instrument	Manufacturer	Model	TESEO ref.
Log-periodic Antenna	AR	AT 1080	1069
Power Amplifier	AR	100W1000M1A	1067
RF Signal Generator	HP	8648A	1033
Directional Coupler	AR	DC6180	1068
Antenna Horn	AR	AT4002A	1314
Directional Coupler	AR	DC7144A	1342
RF Meter	TESEO	SOPM03	1331
Amplifier	AR	50S1G4A	1399
Signal Generator	R&S	SMP02	1342

3.6.7 **Execution of the test**

The test has been performed both in horizontal and vertical polarization, whit frequency step of 1% of the fundamental. The test was performed whit the EUT placed with the front side towards the field generator antenna.

3.6.8 **Results**

The verifying of the device working properly has been done by means of the rotation of the fan. The test is passed with performance criterion A (see 1.8.4).


3.6.9 Comments

This test is not accredited by ACCREDIA.

Operator:

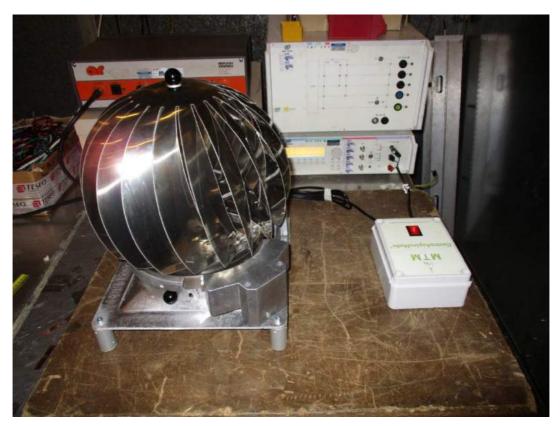
Ilario Molon

This document has been printed in original on paper reporting the TESEO STRACE logo in colour

pag. 43/53

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Test N° I.3: Electrical Fast Transients / Burst (EFT/B) 3.7


Port:	240 Vac power supply
Base standard:	IEC 61000-4-4:2012
Performance criterion :	В
Level:	$\pm 2 kV$, 5 kHz

3.7.1 **Test facilities**

This test has been executed in the test bench electrical fast transient/burst.

3.7.2 EUT Configuration during the test

The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.

Electrical Fast EFT\BURST set-up

This document has been			TESEOLINACE	
This document has been a	nrinted in original on	naper reporting the	- IEDEO STREE	logo in colour

Date: November 29 th , 2016	Revision: 1
MOD 0 104 B rev $\frac{4}{4}$	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.7.3 **EUT exercise software**

None.

3.7.4 **Special accessories**

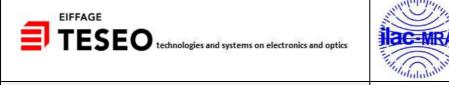
None.

3.7.5 **Equipment used**

Instruments	Manufacturer	Model	TESEO ref.	
Compact Simulator	EM TEST	UCS500M	1364	

3.7.6 **Results**

The verifying of the device working properly has been done by means of the rotation of the fan. The test is passed with performance criterion A (see 1.8.4).


3.7.7 Comments

This test is not accredited by ACCREDIA.

Operator:

Simone Papi

This document has been printed in original on paper reporting the

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.8 Test N° I.4: Immunity to voltage dips and interruptions

Port :	Power supply 240Vac
Test specification :	EN 61000-4-11:2004
Performance criterion:	<i>B</i> , <i>C</i> , <i>C</i> , <i>C</i>
Level:	0% 20 ms, 40% 200 ms, 70% 500ms, >95% 5000ms;

3.8.1 Test facilities

This test has been executed in the test bench.

3.8.2 Configuration of the EUT during the test

The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.

3.8.3 EUT exercise software

None.

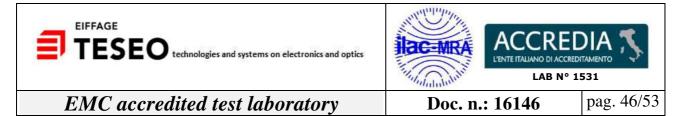
3.8.4 Special accessories

None.

3.8.5 Test equipment used

Instrument	Manufacturer	Model	TESEO Ref.
Compact Simulator	EM TEST	UCS 500 M4	1364
Adjustable single-phase power supply	HP	6843A	1051

3.8.6 Results


See table below:

Hole/Break	Cycle	Required Criterion	Found Criterion	Result
0%	1 (20ms)	В	А	PASS
40%	10 (200ms)	С	А	PASS
70%	25 (0.5s)	C	А	PASS
>95%	250 (5s)	С	С	PASS

The verifying of the device working properly has been done by means of the rotation of the fan. The test is passed .

This document has been printed in original on paper reporting the STESEO STRACE logo in colour

Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104_B rev. <mark>4</mark>	

3.8.7 Comments

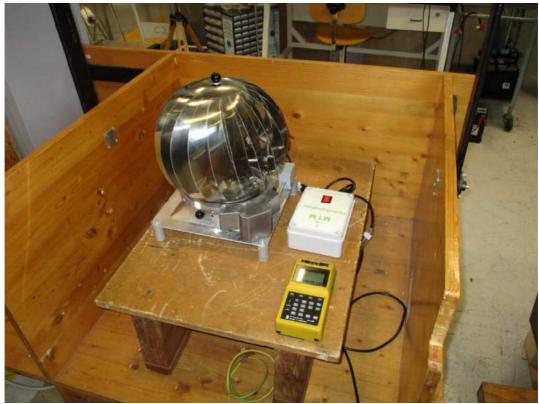
This test is not accredited by ACCREDIA.

Operator: Simone Papi

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

Test N° I.5: Magnetic field immunity 3.9

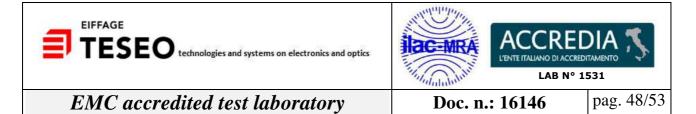

Port: Enclosure **Base standard :** EN 61000-4-8:1993+A1:2001 **Performance criterion:** Α Frequency: 50 Hz Limits: 30 A/m

3.9.1 **Test facilities**

This test has been executed in the automatic test bench 50 Hz.

3.9.2 Configuration of the EUT during the test

The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.


Magnetic field immunity setup

3.9.3 **EUT** exercise software

None.

This document has been	printed in original of	on paper reporting th	TESEO SPACE	logo in colour

Date: November 29 th , 2016	Revision: 1
MOD 0.104_B rev. <mark>4</mark>	

3.9.4 Special accessories

None.

3.9.5 Test equipment used

Instruments	Manufacturer	TESEO ref.
Bench for immunity test at network frequency magnetic fields	TESEO	1048
Generator for immunity test at network frequency magnetic fields	TESEO	1049

3.9.6 Execution of the test

The test was performed on the three axes of EUT.

The verifying of the device working properly has been done by means of the rotation of the fan.

3.9.7 Results

The test is passed with performance criterion A (see 1.8.4).

3.9.8 Comments

This test is not accredited by ACCREDIA.

Operator:

Simone Papi

This document has been printed in original on paper reporting the STEEO STACE logo in colour

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.10 Test N°I.6: Immunity to electrostatic discharges

Port:	Enclosure
Base standard :	IEC 61000-4-2:2009
Performance criteria:	В
Level:	8 kV air discharges, 4 kV contact discharges. Positive and negative, direct and
	indirect

3.10.1 **Test facilities**

This test has been executed in the ESD test bench.

3.10.2 Climatic conditions at the time of testing

Room temperature:	28.2 °C +/- 0,4°C;
Relative humidity:	41,6 % +/- 2,3%;
Atmospheric pressure:	994,6 hPa +/- 0,8 hPa

Climatic conditions are therefore compatible with requirements of the standard rule.

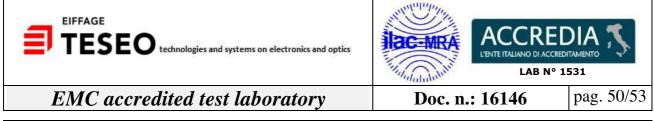
3.10.3 Configuration of the EUT during the test

The EUT has been arranged and connected according to its normal installation requirements.

EUT exercise software 3.10.4

None.

3.10.5 **Special accessories**


None.

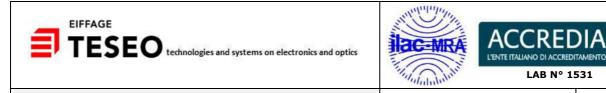
Test equipment used 3.10.6

Instruments	Manufacturer	Model	Certified	TESEO ref.
			expiration date	
ESD generator	EMTEST	ESD30C	11/01/17	1362
Multimeter	FLUKE	75	03/12/17	1531
Data logger Humidity, preassure	EXTECH INSTRUMENTS	SD700	14/11/17	1423
and Temperature				

This document has been printed in original on paper reporting the **TESEO** INACE logo in colour

Date	: November 29 th , 2016			Revision: <mark>1</mark>
MOD	0.104_B rev. <mark>4</mark>			

3.10.7 Measured uncertainty:


The instrument used for this test complies whit standard.

3.10.8 Execution of the test.

Air discharges on the insulating and discharging parts (Red point) on the metal parts (Blue point) of the EUT have been performed, at point accessible to the user during operation.

This document has been printed in original on paper reporting the TESEO STACE logo in colour

Doc. n.: 16146

pag. 51/53

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

3.10.9 Results

The verifying of the device working properly has been done by means of the rotation of the fan. The test is passed with performance criterion A (see 1.8.4)

3.10.10 Co	omments
------------	---------

None.

Operator: Simone Papi

This document has been printed in original on paper reporting the	go in colour
Date: November 29 th , 2016	Revision: <mark>1</mark>
MOD 0.104 B rev. $\frac{4}{4}$	

Doc. n.: 16146

Equipment Under Test: Eolic powered aspirator mod. 300/BQ/INOX s/n 0002

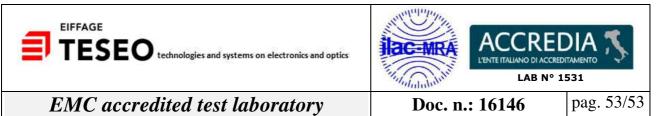
Test N° I.7: Surges immunity 3.11

Port:	Power 240Vac
Base standard:	IEC 61000-4-5:2006
Performance criterion:	B
Level:	1 kV differential mode, 2kV common way, positive and negative

3.11.1 **Test facilities**

This test has been executed on the automatic bench test Surges.

3.11.2 Configuration of the EUT during the test


The EUT has been arranged and connected according to its normal installation requirements as defined in the product documentation.

Surge immunity test set-up

	- B00112	
This document has been printed in original on paper reporting the	TESEOLINACE	
This document has been printed in original on paper reporting the	- IEDEO STATE	logo in colour
This document has been printed in original on paper reporting the		logo in colour

Date: November 29 th ,	2016	Revision: 1
MOD 0.104 B rev.4		

3.11.3 EUT exercise software

None.

3.11.4 Special accessories

None.

3.11.5 Test equipment used

Instruments	Manufacturer	Model	TESEO ref.
Compact simulator	EMTEST	UCS 500 M4	1364

3.11.6 Result

The verifying of the device working properly has been done by means of the rotation of the fan. The test is passed with performance criterion A (see 1.8.4).

3.11.7 Comments

This test is not accredited by ACCREDIA.

Operator: Simone Papi

This document has been printed in original on paper reporting the TESEO STACE logo in colour